0040-4020(95)00385-1 # Amino Acids and Peptides. XLI.^{1, 2} Facile Synthesis of 5-Methyl-2(1*H*)-pyrazinone Derivatives from Dipeptidyl Chloromethyl Ketones³ Hiroaki Taguchi, Toshio Yokoi, Masaki Tsukatani and Yoshio Okada* Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Nishi-ku, Kobe 651-21, Japan Abstract: 5-Methyl-2(1H)-pyrazinone derivatives were easily synthesized by short reflux of dipeptidyl chloromethyl ketone hydrochlorides in MeOH. #### INTRODUCTION Some naturally occurring 2(1H)-pyrazinone derivatives possess antibiotic and smooth muscle relaxation activities and its derivatives are key intermediates for preparing mold metabolites which exhibit antibiotic activities against gram-negative micro-organisms.⁴ It is also well known that 2(1H)-pyrazinones can be easily converted to the corresponding pyrazinethiols by 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide (Lawesson's reagent).⁵ Therefore, pyrazinone derivatives are useful intermediates of acyloxypyrazines⁶ and acylthiopyrazines, 7 which are convenient acylating agents for amines, alcohols and phenols. Therefore, great efforts have been directed toward development of synthetic methods of 2(1H)-pyrazinone derivatives and various kinds of synthetic procedures were developed. Although 2(1H)-pyrazinone derivatives were prepared by condensation of 1,2-dicarbonyl compounds with amino acid amides⁸ or by hydrolysis of the corresponding methoxypyrazine derivatives, 6, 9 which were prepared from the corresponding chloride 10, 11 and sodium methoxide, each method has some problems to be solved. For examples, cyclization reaction should be carried out under the milder condition with high yield, and the desired substituents should be introduced at position 3 and 6 easily. Therefore, the development of more convenient synthetic procedure of 2(1H)-pyrazinone derivatives has been required. Previously, we have reported that 5-methyl-2(1H)-pyrazinone derivatives were obtained from dipeptidyl chloromethyl ketones during acid hydrolysis (6N HCl, 110°C, 20h). 12 It was revealed that the above cyclized derivatives existed in pyrazinone derivatives rather than pyrazinol derivatives judging from data of NMR.¹² Therefore, we considered that this cyclization reacion might be applied to novel synthetic method of pyrazinone derivatives, and tried to optimize the reaction condition. This paper deals with a simple and convenient synthetic procedure of 5-methyl-2(1H)-pyrazinone derivatives. #### RESULTS AND DISCUSSION In order to assess the new synthetic procedure of 5-methyl-2(1*H*)-pyrazinone derivatives from dipeptidyl chloromethyl ketones, various kinds of Boc-NH-CH(R₁)-CONH-CH(R₂)-COCH₂Cl (1) were prepared by the coupling of Boc-NH-CH(R₁)-COOH and H₂N-CH(R₂)-COCH₂Cl¹³ by mixed anhydride method ¹⁴ according 7362 H. TAGUCHI et al. to Scheme 1. First of all, Boc-Phe-Ala-CH₂Cl was converted to the corresponding 3-benzyl-5, 6-dimethyl-2(1*H*)-pyrazinone (3a) under the condition of acid hydrolysis (6N HCl, 110°C, 20h). ¹³ Although Boc-Phe-Ala-CH₂Cl was converted to 3a with low yield of production of the corresponding amino acid residue (Phe) under # Scheme 1 the above condition, the yield of **3a** was very low presumably due to the degradation of **3a** formed. Therefore, the rate of the decomposition of **3a** during acid hydrolysis(6N HCl, 110°C) was examined by HPLC. As shown in Fig. 1, the peak corresponding to **3a** was disappeared after 48h. In order to avoid the decomposition of 5-methyl-2(1H)-pyrazinone derivative formed, water as solvent was substituted with MeOH, and we further studied the yield of **3a** from Boc-Phe-Ala-CH₂Cl under various conditions such as in 6N HCl, 1N HCl and 3N HCl/MeOH and HCl-H-Phe-Ala-CH₂Cl in MeOH. The results are summarized in Table 1. From the Table 1, it can be concluded that the condition (HCl-H-Phe-Ala-CH₂Cl in MeOH) is the most favorable to cyclize dipeptidyl chloromethyl ketone to **3a**. Fig. 1 Decomposition of 3-Benzyl-5,6-dimethyl-2(1H)-pyrazinone(3a) in 6N HCl Table 1. Formation of 3-Benzyl-5,6-dimethyl-2(1H)-pyrazinone under Various Conditions | Starting material | Condition* | (%)Yield ** | |----------------------------------|-------------|-------------| | Boc-Phe-Ala-CH ₂ Cl | 6N HCl | 29.3 | | | 1N HCl | 31.0 | | | 3N HCl/MeOH | 62.9 | | HCl•H-Phe-Ala-CH ₂ Cl | МеОН | 65.3 | reflux for 2h isolated yield Table 2. Formation of 5-Methyl-2(1H)-pyrazinone Derivatives from Dipeptidyl Chloromethyl Ketones. | Products | R ₂ | O R1 | (%)Yield * | M.p.(°C) | |------------|----------------|----------------|------------|----------| | | R ₁ | R ₂ | | | | 3a | Bzl | Ме | 65.3 | 161-162 | | 3b | Et | iBu | 89.9 | 109-100 | | 3c | iPr | iBu | 88.0 | 166-167 | | 3d | Pr | iBu | 78.6 | 88-89 | | 3e | iBu | iBu | 74.2 | 132-134 | | 3f | sec-Bu | iBu | 58.5 | 111-112 | | 3g | Bu | iBu | 93.4 | 92-93 | | 3h | Me | Bzl | 75.4 | 154-155 | | 3i | Et | Bzi | 56.7 | 169-170 | | 3 j | i Pr | Bzl | 67.1 | 214-215 | | 3k | Pr | Bzl | 60.3 | 152-154 | | 31 | i Bu | Bzl | 67.5 | 161-163 | | 3m | sec-Bu | Bzl | 72.0 | 177-178 | | 3n | Bu | Bzl | 93.0 | 145-146 | | 30 | Н | iBu | 90.6 | 128-130 | ^{*} isolated yield Next, in order to examine whether the distance between the amino group and carbonyl group of chloromethyl ketone moiety of dipeptidyl chloromethyl ketone affects the yield of 5-methyl-2(1H)-pyrazinone derivatives or not, stereoisomers of Boc-Phe-Leu-CH₂Cl (D-L, L-D, D-D) were prepared in the same manner as described for the synthesis of Boc-Phe-Leu-CH₂Cl. They were converted to the corresponding 2(1H)-pyrazinone derivative under the same condition. The yield of 2(1H)-pyrazinone derivative in each case was similar to that of L-L compound, indicating that the distance between the amino group and carbonyl group of chloromethyl ketone moiety of dipeptidyl chloromethyl ketone was not related to reactivity of this cyclization reaction. These results show that racemic amino acid can be employed for preparing dipeptidyl chloromethyl ketone as starting material for 2(1H)-pyrazinone derivative. On the basis of the above studies, 2(1H)-pyrazinone derivatives (3b-30) were prepared by refluxing of the MeOH solution of the corresponding dipeptidyl chloromethyl ketone hydrochloride with fairly high yield. Yields and mps are summarized in Table 2. Next, in order to examine the effect of chloride atom in dipeptidyl chloromethyl ketone on this cyclization reaction, we synthesized Boc-Phe-Leu-CH3 from Boc-Phe-Leu-CH2Cl by catalytic hydrogenation (Scheme 2). Scheme 2 It was treated with 6N HCl at 110°C for 20h to afford phenylalanine residue in an yield of 75% and pyrazinone derivative was not isolated. Then, H-Phe-Leu-CH3•HCl in MeOH was refluxed for 2h to give the corresponding pyrazinone derivative in an yield of 65%, which was identified with 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone 12 derived from H-Phe-Leu-CH2Cl•HCl using NMR, MS and IR. The differences in reactivity between chloromethyl ketone derivative and methyl ketone derivative might be explained as follows: 1) Electrophilicity of carbonyl group of chloromethyl ketone is higher than that of methyl ketone. 2) The formation of stable pyrazinone derivative from dipeptidyl chloromethyl ketone derivative by leaving chloride anion is much easier than that from methyl ketone derivative, in which pyrazinone derivative might be formed oxidatively in the presence of oxygen more slowly than from the corresponding chloromethyl ketone derivative. 7366 H. TAGUCHI et al. Finally it will be concluded that this novel method can afford 2(1H)-pyrazinone derivatives substituted at the position 3 and 6 (R₁ and R₂, Scheme 1) with the desired alkyl groups in high yield, so far examined, therefore, this simple and convenient synthetic procedure is a recommendable one. ## **EXPERIMENTAL SECTION** Mps were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were measured with an automatic polarimeter, model DIP-360 (Japan Spectroscopic Co.) and the $[\alpha]$ D values are given in 10⁻¹deg cm² g⁻¹. Amino acid compositions of hydrolysates (6N HCl, 110°C, 20h) were determined with an amino acid analyzer, K-202 SN (Kyowa Seimitu Co.). ¹H (400, 500MHz) and ¹³C (100, 125MHz) NMR spectra were recorded either on a Bruker AM400 or a ARX500 spectrometer. Chemical shift values are expressed as ppm down field from tetramethylsilane used as an internal standard (δ-value). J values are given in Hz. Attribution of ¹³C signals were made also with the aid of DEPT experiments, and multiplicities are indicated by p (primary), s (secondary), t (tertiary) or q (quaternary). Mass spectra were measured with a Hitachi M-2000 mass spectrometer using EI technique. On HPLC analysis, solvent gradient for analytical separation and coinjection was run at 1 ml/min as follows: eluent A, H₂O/0.05% TFA; eluent B, CH₃CN/0.05% TFA; isocratic 80% A for 5 min, 20 min linear gradient to 20% A, isocratic 20% A for 5 min, 10 min linear gradient to initial conditions; column: Waters Nova-Pak C18 (3.9 x 150 mm); retention time was reported as rg. TLC was conducted on precorted Kiesegel 60 F₂₅₄ (Art. 5715; Merck) with the following solvent system: (A) CHCl₃-AcOEt-EtOH (30:19:1 v/v), (B) CHCl₃-MeOH (19:1 v/v), (C) AcOEt-hexane (1:2 v/v), (D) CHCl₃-MeOH-AcOH (90:8:2 v/v), (E) AcOEt-hexane (2:1 v/v) and the Rf values were reported as Rf(A), Rf(B), Rf(C), Rf(D) and Rf(E), respectively. Optimization of cyclization reaction condition 1) Synthesis of Boc-Phe-Ala-CH2Cl and H-Phe-Ala-CH2Cl•HCl Boc-Phe-Ala-CH₂Cl A mixed anhydride [prepared from Boc-Phe-OH (2.4 g, 9.0 mmol), Et₃N (1.4 ml, 9.9 mmol) and isobutyl chloroformate (1.2 ml, 9.0 mmol) as usual] in THF (100 ml) was added to an ice-cold solution of H-Ala-CH₂Cl•HCl [prepared from Boc-Ala-CH₂Cl¹⁵ (1.0 g, 3.4 mmol) and 5.1 N HCl/dioxane (7.4 ml, 54.0 mmol) as usual] in DMF (100 ml) containing Et₃N (1.4 ml, 9.9 mmol). The reaction mixture was stirred at 0°C for 1h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO₃ and water, dried over Na₂SO₄ and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, yield 2.4 g (72.4%), mp 123-127°C, [α]_D²⁵ -34.5° (c=1.0, MeOH), Rf(D) 0.71, Rf(B) 0.46. Anal. Calcd for C₁₈H₂₅ClN₂O₄: C, 58.6; H, 6.83; N, 7.59. Found: C, 58.3; H, 6.85; N, 7.54. H-Phe-Ala-CH₂Cl₂·HCl A solution of Boc-Phe-Ala-CH₂Cl₂(0.5 g, 1.4 mmol) in 5.1N HCl/dioxane(1.4 ml, 7.0 mmol) was kept at room temperature for 1h. Ether was added to the solution to form precipitate, which was collected by filtration and dried over KOH pellets in vacuo, yield 0.4 g (93.7%), mp 135-137°C, Rf(D) 0.1. Anal. Calcd for C₁₃H₁₇ClN₂O₂•HCl: C, 51.2; H, 5.94; N, 9.18. Found: C, 51.2; H, 5.91; N, 9.30. 2)Synthesis of 3-benzyl-5, 6-dimethyl-2(1H)-pyrazinone(3a) from Boc-Phe-Ala-CH₂Cl and H-Phe-Ala-CH₂Cl•HCl under various conditions. i) From Boc-Phe-Ala-CH2Cl under various acidic conditions A solution of Boc-Phe-Ala-CH2Cl (0.6 g, 1.63 mmol) in acidic solvent (6N HCl, 3N HCl/MeOH or 1N HCl) (4 ml each) was refluxed for 2h. After removal of the solvent, the residue was extracted with CHCl3. The extract was washed with water, dried over MgSO4 and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, mp 161-162°C, Rf(B) 0.46, MS m/z: 214 M+. 1 H NMR (CDCl3 400MHz) δ : ppm 13.5 (1H, brs, NH), 7.40-7.12 (5H, m, 3-CH2-ph), 4.01 (2H, s, 3-CH2-ph), 2.24 (3H, d, J=6.0, 6-CH3), 2.18 (3H, s, 5-CH3), 13 C NMR (CDCl3 100MHz) δ : ppm 157.6 (q, C-2), 153.8 (q, C-3), 138.2 (q, C-1'), 131.7 (q, C-6), 129.9 (q, C-5), 129.2 (t, C-3', 5'), 128.1 (t, C-2', 6'), 126.2 (t, C-4'), 39.3 (s, 6- Ω H2-ph), 18.7 (p, 5-CH3), 15.9 (p, 6-CH3). Anal. Calcd for C13H14N2O: C, 72.9 H, 6.59; N, 13.1. Found: C, 73.0; H, 6.59; N, 13.1. Yields are summarized in Table 1. ii) From H-Phe-Ala-CH₂Cl in MeOH H-Phe-Ala-CH₂Cl i-HCl (0.5 g, 1.64 mmol) was dissolved in MeOH (20ml). The reaction mixture was refluxed for 2 h. After removal of the solvent, the residue was extracted with CHCl₃. The extract was washed with water, dried over MgSO₄ and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, mp 161-162°C. Yield is shown in Table 1. Studies on decomposition of 3a during acid hydrolysis 3a (50 mg, 0.23 mmol) was dissolved in 6N HCl (2 ml). The reaction mixture was refluxed. An aliquot (0.05 ml) was taken periodically and diluted with MeOH (0.3 ml), and 0.01 ml of the diluted solution was analyzed with HPLC apparatus. The peak areas corresponding to 3-benzyl-5, 6-dimethyl-2(1H)-pyrazinone was plotted as a function of time (0.5, 1, 2, 6, 12, 24, 48h). The results is shown in Fig. 1. Studies on the effect of diastereoisomer on cyclization reaction Boc-D-Leu-CH2Cl Diazomethane [prepared from nitrosomethyl urea (14.2 g, 0.14 mol)] in ether (100 ml) was added to a mixed anhydride [prepared from Boc-D-Leu-OH (8.0 g, 34.6 mmol), Et3N (4.2 ml, 30 mmol) and isobutyl chloroformate (4.5 ml, 34.6 mmol) as usual] in THF (150 ml) at -15°C and the reaction mixture was stirred at 4° C overnight. Then 7.6N HCl/dioxane (18.4 ml, 0.14 mol) was added to the reaction mixture at 0° C, and the resultant solution was stirred at 0° C for 3h. After neutralization of the solution with Et3N and removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10° C citric acid, 5° N NaHCO3 and water, dried over Na₂SO₄ and evaporated down. Hexane was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, yield 5.97 g (63.3%), mp 49-50°C, $[\alpha]D^{25}$ +50.9°(c=1.0, MeOH), Rf(B) 0.84. Anal. Calcd for C₁₂H₂₂ClNO₃: C, 54.6; H, 8.41; N, 5.31. Found: C, 54.3; H, 8.49; N, 5.33. 1) General procedure for the synthesis of diastereoisomers of Boc-Phe-Leu-CH₂Cl¹³ Boc-Phe-D-Leu-CH₂Cl A mixed anhydride [prepared from Boc-Phe-OH (0.64 g, 2.5 mmol), NMM (0.33 ml, 3.0 mmol) and isobutyl chloroformate (0.33 ml, 2.5 mmol) as usual] in THF (30 ml) was added to an ice-cold solution of H-D-Leu-CH₂Cl•HCl [prepared from Boc-D-Leu-CH₂Cl (0.66 g, 2.5 mmol) and 5.1N HCl/dioxane (2.9 ml, 15.0 mmol) as usual] in DMF (30 ml) containing NMM (0.33 ml, 3.0 mmol). The reaction mixture was stirred at 0°C for 1h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO₃ and water, dried over Na₂SO₄ and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, 0.72 g (69.6%), mp 131-134°C, [α]D²⁵ 64.1° (c=1.0, MeOH), Rf(B) 0.97, Rf(D) 0.69. Anal. Calcd for C₂1H₃1ClN₂O₄: C, 61.4; H, 7.60; N, 6.81. Found: C, 61.4; H, 7.73; N, 6.90.; D-1: Yield 0.7 g (67.2%), mp 126-128°C, [α]D²⁵ -75.2° (c=1.0, MeOH), Rf(B) 0.97, Rf(D) 0.71. Anal. Calcd for C₂1H₃1ClN₂O₄: C, 61.4; H, 7.60; N, 6.81. Found: C, 61.6; H, 7.61; N, 6.91.; D-D: Yield 0.64 g (65.2%), mp 153-155°C, [α]D²⁵ 51.3° (c=1.0, MeOH), Rf(B) 0.9, Rf(D) 0.76. Anal. Calcd for C₂1H₃1ClN₂O₄: C, 61.4; H, 7.60; N, 6.83. 2) Evaluation of yield of 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone from diastereoisomeric dipeptidyl chloromethyl ketones Each diastereoisomeric dipeptidyl chloromethyl ketone hydrochloride[prepared from 1.-1, ¹³ D-L, L-D or D-D,(0.82 g, 2.0 mmol) and 5.1N HCl/dioxane(1.96 ml, 10.0 mmol) as usual] was dissolved in MeOH(50 ml). The reaction mixture was refluxed for 2 h. After removal of the solvent, the residue was extracted with CHCl₃. The extract was washed with water, dried over MgSO₄ and evaporated down. Petroleum ether was added to the residue to afford 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone¹² as crystals, which were collected by filtration and recrystallized from EtOH. Yields, from L-1: 65%; D-1: 70%; L-D: 62% and D-D: 73%. General procedure for the synthesis of dipeptidyl chloromethyl ketone derivatives A mixed anhydride [prepared from Boc protected amino acid (5.0 mmol), NMM or Et3N (5.5 mmol) and isobutyl chloroformate (5.0 mmol) as usual] in THF (60 ml) was added to an ice-cold solution of H-Leu-CH2Cl•HCl or H-Phe-CH2Cl•HCl [prepared from Boc-Leu-CH2Cl or Boc-Phe-CH2Cl (5.0 mmol) and 5.1 N HCl/dioxane (30.0 mmol) as usual] in DMF (60 ml) containing NMM or Et3N (5.5 mmol). The reaction mixture was stirred at 0°C for 1h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO3 and water, dried over Na2SO4 and evaporated down. The residue was purified by silica-gel column chromatography or recrystallization. Boc-Gly-Leu-CH₂Cl Recrystallized from EtOH, $[\alpha]D^{25}$ -60.0°(c=1.0, MeOH), Rf(D) 0.61, ^{1}H NMR (CDCl₃ 500MHz) δ: ppm 6.84 (1H, brs), 5.33 (1H, brs), 4.81 (1H, brs), 4.32 (1H, d, J=16.1), 4.26 (1H, d, J=16.1), 3.84 (1H, dd, J=5.4, 16.6), 3.77 (1H, dd, J=5.8, 16.6), 1.66 (2H, m), 1.53-1.46 (10H, m), 0.96 (3H, d, J=5.0), 0.95 (3H, d, J=6.1), ^{13}C NMR (CDCl₃ 125MHz) δ: ppm 201.5 (q), 170.0 (q), 156.3 (q), 80.6 (q), 54.6 (t), 46.7 (s), 44.4 (s), 40.0 (s), 28.3 (p), 24.9 (s) 23.2 (p) 21.5 (p). Anal. Calcd for C₁4H₂5ClN₂O₄: C, 52.4; H, 7.85; N, 8.73. Found: C, 52.3; H, 8.13; N, 8.64. Boc-DL-Abu-Leu-CH₂Cl Work up followed by silica-gel column chromatography eluting with 1:2 v/v AcOEt-hexane, yield 0.42 g (62.5%), oil, Rf(C) 0.5. Boc-Val-Leu-CH₂Cl Recrystallized from AcOEt, yield 0.75 g (45.8%), mp 139-141°C, $[\alpha]_D^{25}$ -67.8°(c=1.0, MeOH), Rf(A) 0.83. Anal. Calcd for C₁₇H₃₁ClN₂O₄: C, 56.3; H, 8.61; N, 7.72. Found: C, 56.2; H, 8.82; N, 7.65. **Boc-DL-Nva-Leu-CH₂Cl** Recrystallized from EtOH, yield 1.2 g (73.7%), mp 79-81°C, Rf(A) 0.84. *Anal.* Calcd for C₁₇H₃₁ClN₂O₄: C, 56.3; H, 8.61; N, 7.72. Found: C, 56.3; H, 8.75; N, 7.72. Boc-Ile-Leu-CH₂Cl Recrystallized from AcOEt, yield 0.61 g (46.4%), mp 142-143°C, $[α]_D^{25}$ -70.4°(c=1.0, MeOH), Rf(A) 0.84. Anal. Calcd for C₁₈H₃₃ClN₂O₄: C, 57.4; H, 8.82; N, 7.43. Found: C, 57.6; H, 8.92; N, 7.54. **Boc-Leu-CH2Cl** Recrystallized from EtOH, yield 0.52 g (39.5%), mp 135-137°C, $[\alpha]D^{25}$ -79.1°(c=1.0, MeOH), Rf(A) 0.76. **Anal.** Calcd for C₁₈H₃₃ClN₂O₄: C, 57.4; H, 8.82; N, 7.43. Found: C, 57.1; H, 8.85; N, 7.31. Boc-DL-Nle-Leu-CH₂Cl Recrystallized from EtOH, yield 0.54 g (58.6%), mp 86-88°C, Rf(A) 0.85. Anal. Calcd for C₁₈H₃₃ClN₂O₄: C, 57.4; H, 8.82; N, 7.43. Found: C, 57.1; H, 8.66; N, 7.36. Boc-Ala-Phe-CH₂Cl Recrystallized from EtOH, yield 0.91 g (70.5%), mp 133-134°C, $[α]D^{25}$ -101.1°(c=1.0, MeOH), Rf(B) 0.63, Rf(D) 0.81. Anal. Calcd for C₁₈H₂₅ClN₂O₄: C, 58.6; H, 6.83; N, 7.59. Found: C, 58.7; H, 6.98; N, 7.58. Boc-DL-Abu-Phe-CH₂Cl Recrystallized from EtOH, yield 0.71 g (65.4%), mp 158-159°C, Rf(D) 0.59. Anal. Calcd for C₁9H₂7ClN₂O₄: C, 59.6; H, 7.14; N, 7.19. Found: C, 59.6; H, 7.11; N, 7.32. **Boc-Val-Phe-CH2Cl** Recrystallized from EtOH, yield 0.4 g (48.0%), mp $161-169^{\circ}$ C, $[\alpha]D^{25}$ -90.40 (c=1.0, MeOH), Rf(C) 0.41. **Anal.** Calcd for C₂₀H₂₉ClN₂O₄: C, 60.5; H, 7.36; N, 7.06. Found: C, 60.4; H, 7.54; N, 7.04. Boc-DL-Nva-Phe-CH₂Cl Recrystallized from EtOH, yield 0.55 g (61.2%), mp 138-140°C, Rf(D) 0.69. Anal. Calcd for C₂0H₂9ClN₂O₄: C, 60.5; H, 7.36; N, 7.06. Found: C, 60.3; H, 7.42; N, 6.79. Boc-Ile-Phe-CH₂Cl Recrystallized from EtOH, yield 0.8 g (57.4%), mp 156-157°C, $[\alpha]D^{25}$ -87.8° (c=1.0, MeOH), Rf(A) 0.89. Anal. Calcd for C₂₁H₃₁ClN₂O₄: C, 61.4; H, 7.60; N, 6.82. Found: C, 61.3; H, 7.68; N, 6.58. Boc-Leu-Phe-CH₂Cl Recrystallized from EtOH, yield 0.83 g (66.7%), mp 138-139°C, $[\alpha]_D^{25}$ -84.8°(c=1.0, MeOH), Rf(A) 0.85. Anal. Calcd for C₂₁H₃₁ClN₂O₄: C, 61.4; H, 7.60; N, 6.82. Found: C, 61.2; H, 7.73; N, 6.81. Boc-DL-Nle-Phe-CH₂Cl Recrystallized from EtOH, yield 0.625 g (66.9%), mp 121-122°C, Rf(E) 0.85. Anal. Calcd for C₂₁H₃₁ClN₂O₄: C, 61.4; H, 7.60; N, 6.82. Found: C, 61.1; H, 7.58; N, 6.78. General procedure for the synthesis of 5-methyl-2(1H)-pyrazinone derivatives (3b-3a) Dipeptidyl chloromethyl ketone hydrochloride [prepared from Boc protected dipeptidyl chloromethyl ketone (0.5 mmol) and 5.4 N HCl/dioxane(3.0 mmol) as usual] was dissolved in MeOH (100 ml). The reaction mixture was refluxed for 2 h. After removal of the solvent, the residue was extracted with CHCl3. The extract was washed with water, dried over MgSO4 and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration. The crude product was purified by recrystallization from appropriate solvent as described below. Yields and mps are summarized in Table 2. 3-Ethyl-5-methyl-6-isobutyl-2(1H)-pyrazinone(3b) Recrystallized from acetone, Rf(A) 0.51, t_R 9.98 min, MS m/z: 194 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.3 (1H, brs, NH), 2.80 (2H, q, J=7.5, 3-CH₂CH₃), 2.44 (2H, d, J=7.4, 6-CH₂CH(CH₃)₂), 2.29 (3H, s, 5-CH₃), 2.04 (1H, nonet, J=6.8, 6-CH₂CH(CH₃)₂), 1.26 (3H, t, J=7.5, 3-CH₂CH₃), 0.98 (6H, d, J=6.6, 6-CH₂CH(CH₃)₂), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.5 (q, C-2), 157.0 (q, C-3), 134.0 (q, C-6), 129.6 (q, C-5), 38.9 (s, 6-CH₂CH(CH₃)₂), 28.9 (t, 6-CH₂CH(CH₃)₂), 26.2 (s, 3-CH₂CH₃), 22.3 (p, 6-CH₂CH(CH₃)₂), 18.8 (p, 5-CH₃), 11.2 (p, 3-CH₂CH₃). Anal. Calcd for C₁₁H₁₈N₂O•H₂O: C, 67.1; H, 9.42; N, 14.2. Found: C, 67.1; H, 9.36; N, 14.2. 3-Isopropyl-5-methyl-6-isobutyl-2(1H)-pyrazinone(3c) Recrystallized from acetone, Rf(A) 0.57, tR 18.83 min, MS m/z: 208 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.4 (1H, brs, NH), 3.37 (1H, heptet, J=6.9, 3-CH(CH₃)2), 2.41 (2H, d, J=7.4, 6-CH₂CH(CH₃)2), 2.28 (3H, s, 5-CH₃), 2.05 (1H, nonet, J=6.8, 6-CH₂CH(CH₃)2), 1.25 (6H, d, J=6.9, 3-CH(CH₃)2), 0.97 (6H, d, J=6.6, 6-CH₂CH(CH₃)2), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 159.8 (q, C-2), 157.2 (q, C-3), 133.7 (q, C-6), 129.5 (q, C-5), 38.9 (s, 6-CH₂CH(CH₃)2), 30.6 (t, 3-CH(CH₃)2), 28.8 (t, 6-CH₂CH(CH₃)2), 22.3 (p, 6-CH₂CH(CH₃)2), 20.0 (p, 3-CH(CH₃)2), 18.9 (p, 5-CH₃). Anal. Calcd for C₁2H₂0N₂O: C, 69.2 H, 9.68; N, 13.5. Found: C, 68.9; H, 9.95; N, 13.4. 3-Propyl-5-methyl-6-isobutyl-2(1H)-pyrazinone(3d) Recrystallized from acetone, Rf(A) 0.5 , t_R 15.67 min, MS m/z: 208 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.4 (1H, brs, NH), 2.74 (2H, t, J=7.7, 3-CH₂CH₂CH₃), 2.43 (2H, d, J=7.3, 6-CH₂CH(CH₃)2), 2.29 (3H, s, 5-CH₃), 2.05 (1H, nonet, J=6.8, 6-CH₂CH(CH₃)2), 1.74 (2H, hextet, J=7.7, 3-CH₂CH₂CH₃), 1.03-0.97 (9H, m, 3-CH₂CH₂CH₃, 6-CH₂CH(CH₃)2), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.7 (q, C-2), 156.1 (q, C-3), 134.1 (q, C-6), 129.6 (q, C-5), 38.9 (s, 6-CH₂CH(CH₃)2), 35.0 (s, 3-CH₂CH₂CH₃), 28.8 (t, 6-CH₂CH(CH₃)2), 22.2 (p, 6-CH₂CH(CH₃)2), 20.6 (s, 3-CH₂CH₂CH₃), 18.8 (p, 5-CH₃), 14.1 (p, 3-CH₂CH₂CH₃). Anal. Calcd for C₁₂H₂ON₂O: C, 69.2 H, 9.68; N, 13.5. Found: C, 68.9; H, 9.95; N, 13.4. 3,6-Diisobutyl-5-methyl-2(1H)-pyrazinone(3e) Recrystallized from acetone, Rf(A) 0.58, Rf(D) 0.72, tq 18.54 min, MS m/z: 222 M+. 1H NMR (CDCl₃ 400MHz) δ: ppm 13.2 (1H, brs, NH), 2.65 (2H, d, J=7.2, 3-CH₂CH(CH₃)₂), 2.42 (2H, d, J=7.4, 6-CH₂CH(CH₃)₂), 2.29 (3H, s, 5-CH₃), 2.22 (1H, nonet, J=6.8, 3-CH₂CH(CH₃)₂), 2.06 (1H, nonet, J=6.7, 6-CH₂CH(CH₃)₂), 0.97 (6H, d, J=6.6, 6-CH₂CH(CH₃)₂), 0.96 (6H, d, J=6.7, 3-CH₂CH(CH₃)₂), 13C NMR (CDCl₃ 100MHz) δ: ppm 157.8 (q, C-2), 155.7 (q, C-3), 134.1 (q, C-6), 129.5 (q, C-5), 41.6 (s, 3-CH₂CH(CH₃)₂), 39.0 (s, 6-CH₂CH(CH₃)₂), 28.8 (t, 6-CH₂CH(CH₃)₂), 27.2 (t, 3-CH₂CH(CH₃)₂), 22.6 (p, 3-CH₂CH(CH₃)₂), 22.3 (p, 6-CH₂CH(CH₃)₂), 18.7 (p, 5-CH₃). Anal. Calcd for C₁3H₂2N₂O: C, 70.2; H, 9.97; N, 12.6. Found: C, 70.0; H, 10.0; N, 12.5. 3-sec-Butyl-5-methyl-6-isobutyl-2(1H)-pyrazinone(3f) Recrystallized from acetone, $[\alpha]D^{25} + 7.2^{\circ}$ (c=1.0, MeOH), Rf(A) 0.67, tR 23.70 min, MS m/z: 222 M⁺. 1 H NMR (CDCl3 400MHz) δ : ppm 13.3 (1H, brs, NH), 3.17 (1H, hextet, J=6.9, 3-CH(CH3)CH2CH3), 2.42 (2H, d, J=7.4, 6-CH2CH(CH3)2), 2.28 (3H, s, 5-CH3), 2.06 (1H, nonet, J=6.7, 6-CH2CH(CH3)2), 1.85 (1H, pentet-like, J=7.3, 3-CH(CH3)CH2CH3) 1.55 (1H, pentet-like, J=7.3, 3-CH(CH3)CH2CH3), 1.23 (3H, d, J=6.7, 3-CH(CH3)CH2CH3), 0.98 (6H, d, J=6.6, 6-CH2CH(CH3)2), 0.90 (3H, t, J=7.4, 3-CH(CH3)CH2CH3), 13 C NMR (CDCl3 100MHz) δ : ppm 159.3 (q, C-2), 157.3 (q, C-3), 133.6 (q, C-6), 129.6 (q, C-5), 38.9 (q, 6-CH2CH(CH3)2), 37.4 (q, 3-CH(CH3)CH2CH3), 28.8 (q, 6-CH2CH(CH3)2), 27.5 (q, 3-CH(CH3)CH2CH3), 22.3 (q, 6-CH2CH(CH3)2), 18.9 (q, 5-CH3), 15.3 (q, 3-CH(CH3)CH2CH), 12.2 (q, 3-CH(CH3)CH2CH3). Anal. Calcd for C13H22N2O: C, 70.2; H, 9.97; N, 12.6. Found: C, 70.1; H, 9.95; N, 12.4. 3-Butyl-5-methyl-6-isobutyl-2(1H)-pyrazinone(3g) Recrystallized from hexane, Rf(A) 0.64 , tq 19.36 min, MS m/z: 222 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.3 (1H, brs, NH), 2.77 (2H, t-like, J=7.8, 3-CH₂CH₂CH₂CH₃), 2.43 (2H, d, J=7.4, 6-CH₂CH(CH₃)2), 2.28 (3H, s, 5-CH₃), 2.05 (1H, nonet, J=6.7, 6-CH₂CH(CH₃)2), 1.73-1.65 (2H, m, 3-CH₂CH₂CH₂CH₃), 1.43 (2H, hextet, J=7.5, 3-CH₂CH₂CH₂CH₃), 0.98 (6H, d, J=6.6, 6-CH₂CH(CH₃)2), 0.94 (3H, t, J=7.4, 3-CH₂CH₂CH₂CH₃), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.6 (q, C-2), 156.4 (q, C-3), 134.0 (q, C-6), 129.5 (q, C-5), 39.0 (s, 6-CH₂CH(CH₃)2), 32.8 (s, 3-CH₂CH₂CH₂CH₃), 29.4 (s, 3-CH₂CH₂CH₂CH₃), 28.8 (t, 6-CH₂CH(CH₃)2), 22.8 (s, 3-CH₂CH₂CH₂CH₃), 22.3 (p, 6-CH₂CH(CH₃)2), 18.8 (p, 5-CH₃), 13.9 (p, 3-CH₂CH₂CH₂CH₃). Anal. Calcd for C₁3H₂2N₂O: C, 70.2; H, 9.97; N, 12.6. Found: C, 70.0; H, 10.27; N, 12.5. 3, 5-Dimethyl-6-benzyl-2(1H)-pyrazinone(3h) Recrystallized from EtOH, Rf(B) 0.59, t_R 8.30 min, MS m/z: 214 M⁺. ¹H NMR (CDCl₃ 500MHz) δ: ppm 11.3 (1H, brs, NH), 7.34-7.22 (5H, m, CH₂-ph), 3.89 (2H, s, 6-CH₂-ph), 2.41 (3H, s, 3-CH₃), 2.34 (3H, s, 5-CH₃), ¹³C NMR (CDCl₃ 125MHz) δ: ppm 157.0 (q, C-2), 154.4 (q, C-3), 135.8 (q, C-1′), 132.1 (q, C-6), 129.12 (q, C-5), 129.10 (t, C-3′, 5′), 128.8 (t, C-2′, 6′), 127.4 (t, C-4′), 36.2 (s, 6-CH₂-ph), 19.9 (p, 5-CH₃), 18.7 (p, 5-CH₃). Anal. Calcd for C₁₃H₁₄N₂O: C, 72.9 H, 6.59; N, 13.1. Found: C, 73.1; H, 6.62; N, 13.1. 3-Ethyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3i) Recrystallized from EtOH, Rf(D) 0.77, t_R 14.18 min, MS m/z: 228 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 12.4 (1H, brs, NH), 7.31-7.23 (5H, m, CH₂-ph), 3.89 (2H, s, 6-CH₂-ph), 2.78 (2H, q, J=7.5, 3-CH₂CH₃), 2.35 (3H, s, 5-CH₃), 1.24 (3H, t, J=7.5, 3-CH₂CH₃), 1³C NMR (CDCl₃ 100MHz) δ: ppm 158.0 (q, C-2), 157.1 (q, C-3), 136.4 (q, C-1), 132.4 (q, C-6), 129.4 (q, C-5), 128.9 (t, C-3′, 5′), 128.7 (t, C-2′, 6′), 127.2 (t, C-4′), 36.2 (s, 6-CH₂-ph), 26.2 (s, 3-CH₂CH₃), 18.8 (p, 5-CH₃), 11.2 (p, 3-CH₂CH₃). Anal. Calcd for C₁4H₁₆N₂O: C, 73.7; H, 7.06; N, 12.3. Found: C, 73.4; H, 7.20; N, 12.0. 3-Isopropyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3j) Recrystallized from EtOH, Rf 0.8, rg 19.30 min, MS m/z: 242 M⁺. Anal. Calcd for C₁5H₁8N₂O: C, 74.4 H, 7.49; N, 11.6. Found: C, 74.4; H, 7.24; N, 11.6. 3-Propyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3k) Recrystallized from acetone, Rf(D) 0.78, t_R 17.15 min, MS m/z: 242 M⁺. ¹H NMR (CDCl₃ 400MHz) δ: ppm 12.9 (1H, brs, NH), 7.29-7.21 (5H, m, CH₂-ph), 3.89 (2H, s, 6-CH₂-ph), 2.73 (2H, t-like, J=7.6, 3-CH₂CH₂CH₃), 2.35 (3H, s, 5-CH₃), 1.71 (2H, hexet, J=7.6, 3-CH₂CH₂CH₃), 0.99 (3H, t, J=7.4, 3-CH₂CH₂CH₃), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.4 (q, C-2), 157.0 (q, C-3), 136.6 (q, C-1'), 132.6 (q, C-6), 129.5 (q, C-5), 128.8 (t, C-3', 5'), 128.7 (t, C-2', 6'), 127.1 (t, C-4'), 36.2 (s, 6-CH₂-ph), 24.9 (s, 3-CH₂CH₂CH₃), 20.5 (s, 3-CH₂CH₂CH₃), 18.9 (p, 5-CH₃), 14.1 (p, 3-CH₂CH₂CH₃). Anal. Calcd for C₁5H₁₈N₂O: C, 74.4 H, 7.49; N, 11.6. Found: C, 74.2; H, 7.39; N, 11.6. 3-Isobutyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3I) Recrystallized from EtOH, Rf(D) 0.82, tR 20.03 min, MS m/z: 256 M+, ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.2 (1H, brs, NH), 7.32-7.21 (5H, m, CH₂-ph), 3.90 (2H, s, 6-CH₂-ph), 2.65 (2H, d, J=7.2, 3-CH₂CH(CH₃)₂), 2.36 (3H, s, 5-CH₃), 2.20 (1H, nonet, J=6.9, 3-CH₂CH(CH₃)₂), 0.95 (3H, d, J=6.7, 3-CH₂CH(CH₃)₂), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.7 (q, C-2), 156.5 (q, C-3), 136.6 (q, C-1'), 132.8 (q, C-6), 129.6 (q, C-5), 128.8 (t, C-3', 5'), 128.7 (t, C-2', 6'), 127.0 (t, C-4'), 41.6 (s, 3-CH₂CH(CH₃)₂), 36.2 (s, 6-CH₂-ph), 27.1 (t, 3-CH₂CH(CH₃)₂), 22.7 (p, 3-CH₂CH(CH₃)₂), 18.9 (p, 5-CH₃). Anal. Calcd for C₁₆H₂₀N₂O: C, 75.0; H, 7.86; N, 10.9. Found: C, 75.2; H, 8.03; N, 10.8. 3-sec-Butyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3m) Recrystallized from EtOH, $[\alpha]D^{25}$ -13.70(c=1.0, CHCl3), Rf(D) 0.82, t_R 20.77 min, MS m/z: 256 M+, ^{1}H NMR (CDCl3 400MHz) δ : ppm 12.4 (1H, brs, NH), 7.30-7.22 (5H, m, CH2-ph), 3.88 (2H, s, 6-CH2-ph), 3.20 (1H, hexet, J=6.9, 3-CH(CH3)CH2CH3), 2.36 (3H, s, 5-CH3), 1.82 (1H, m, 3-CH(CH3)CH2CH3), 1.53 (1H, m, 3-CH(CH3)CH2CH3), 1.20 (3H, d, J=6.9, 3-CH(CH3)CH2CH3), 0.89 (3H, t, J=7.4, 3-CH(CH3)CH2CH3), ^{13}C NMR (CDCl3 100MHz) δ : ppm 160.4 (q, C-2), 157.0 (q, C-3), 136.5 (q, C-1'), 132.0 (q, C-6), 129.4 (q, C-5), 128.9 (t, C-3', 5'), 128.8 (t, C-2', 6'), 127.1 (t, C-4'), 37.0 (t, 3-CH(CH3)CH2CH3), 36.1 (t, 6-CH2-ph), 27.5 (t, 3-CH(CH3)CH2CH3), 18.9 $(p, 5\text{-CH}_3)$, 17.7 $(p, 3\text{-CH}(\underline{C}H_3)\text{CH}_2\text{CH}_3)$, 12.1 $(p, 3\text{-CH}(\text{CH}_3)\text{CH}_2\underline{C}H_3)$. Anal. Calcd for C₁₆H₂₀N₂O: C, 75.0; H, 7.86; N, 10.9. Found: C, 75.1; H, 7.85; N, 11.0. 3-butyl-5-methyl-6-benzyl-2(1H)-pyrazinone(3n) Recrystallized from EtOH, Rf(D) 0.67, t_R 22.03 min, MS m/z: 256 M⁺, ¹H NMR (CDCl₃ 400MHz) δ: ppm 13.1 (1H, brs, NH), 7.31-7.20 (5H, m, 6-CH₂-ph), 3.90 (2H, s, 6-CH₂-ph), 2.76 (2H, t, J=7.7, 3-CH₂CH₂CH₂CH₂CH₃), 2.35 (3H, s, 5-CH₃), 1.67 (2H, penet, J=7.4, 3-CH₂CH₂CH₂CH₂CH₃), 1.41 (2H, hexet, J=7.4, 3-CH₂CH₂CH₂CH₃), 0.93 (3H, t, J=7.3, 3-CH₂CH₂CH₂CH₂CH₃), ¹³C NMR (CDCl₃ 100MHz) δ: ppm 157.4 (q, C-2), 157.2 (q, C-3), 136.6 (q, C-1'), 132.6 (q, C-6), 129.5 (q, C-5), 128.8 (t, C-3', 5'), 128.7 (t, C-2', 6'), 127.1 (t, C-4'), 36.2 (s, 6-CH₂-ph), 32.7 (s, 3-CH₂CH₂CH₂CH₃), 29.3 (s, 3-CH₂CH₂CH₂CH₃), 22.8 (s, 3-CH₂CH₂CH₂CH₃), 18.9 (p, 5-CH₃), 14.0 (p, 3-CH₂CH₂CH₂CH₃). Anal. Calcd for C₁6H₂0N₂O: C, 75.0; H, 7.86; N, 10.9. Found: C, 75.1; H, 8.05; N, 10.8 5-Methyl-6-isobutyl-2(1H)-pyrazinone(3o) Recrystallized from EtOH, Rf(B) 0.17, t_R 4.0 min, MS m/z: 166 M⁺. ¹H NMR (CDCl₃ 500MHz) δ: ppm 13.5(1H, brs, NH), 8.03(1H, s, 3-H), 2.48(2H, d, J=7.5, 6-CH₂CH(CH₃)₂), 2.32(3H, s, 5-CH₃), 2.05(1H, nonet, 6-CH₂CH(CH₃)₂), 1.00(6H, d, J=7.0, 6-CH₂CH(CH₃)₂), 1³C NMR (CDCl₃ 125MHz) δ: ppm 158.4 (q, C-2), 144.3 (q, C-3), 137.0 (q, C-6), 131.5 (q, C-5), 39.2 (s, 6-CH₂CH(CH₃)₂), 28.7 (t, 6-CH₂CH(CH₃)₂), 22.3 (p, 6-CH₂CH(CH₃)₂), 18.8 (p, 5-CH₃). Anal. Calcd for C9H₁4N₂O: C, 65.0 H, 8.49; N, 16.9. Found: C, 65.0; H, 8.67; N, 16.7. Boc-Phe-Leu-CH3 The title compound was prepared from Boc-Phe-Leu-CH2Cl (0.51 g, 1.24 mmol) by catalytic hydrogenation. After neutralization of the solution with Et3N and removal of Pd and the solvent, hexane was added to the residue to afford crystals, which were collected by filtration and recrystallized from Et0H, yield 456 mg (97.6%), mp 113-114°C, $[\alpha]D^{25}$ -32.4°(c=0.1, MeOH), Rf(B) 0.46. Anal. Calcd for C21H32N2O4: C, 65.4; H, 8.63; N, 7.27. Found: C, 65.5; H, 8.50; N, 7.00, Amino acid analysis: Recovery of Phe was 79.4%. Synthesis of 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone ¹² from Boc-Phe-Leu-CH3 H-Val-Leu-CH2Cl•HCl [prepared from Boc-Phe-Leu-CH3 (0.12 g, 0.32 mmol) and 5.0 N HCl/dioxane (0.4 ml, 2.0 mmol) as usual] was dissolved in MeOH (5 ml). The reaction mixture was refluxed for 2 h. After removal of the solvent, the residue was extracted with CHCl3. The extract was washed with water, dried over MgSO4 and evaporated down. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from EtOH, yield 60 mg (73.2%), mp 133-135°C. # **ACKNOWLEDGEMENT** This work was supported in part by a grant from The Science Research Promotion Fund of the Japan Private School Promotion Foundation. ### REFERENCES AND NOTE - 1. Part XL: Taguchi, H.; Hirano, K.; Yokoi, T.; Asada, K. and Okada Y.; Chem. Pharm. Bull., 1995, submitted. - The customary L indication for amino acid residues is omitted; only D isomers are indicated. Standard abbreviations for amino acids, peptides and their derivatives are those recommended by the IUPAC-IUB Commission on Biochemical Nomenclature: Biochemistry, 1966, 5, 2485; ibid., 1967, 6, 362; ibid., 1972, 11, 1726. Other abbreviations used are: Abu, 2-aminobutyric acid; Nva, norvaline; Nle, norleucine; Boc, tert-butyloxycarbonyl; Et3N, triethylamine; NMM, N-methylmorpholine; DMF, dimethylformamide; AcOEt, ethyl acetate; THF, tetrahydrofuran; TFA, trifluoloacetic acid; Me, methyl; Et, ethyl; Pr, propyl; iPr, isopropyl; Bu, butyl; iBu, isobutyl; sec-Bu, sec-butyl; Bzl, benzyl. Preliminary communication. Y Okada, H. Tanuchi, V. Nichiyama and T. Velvi, Tanachara. Late. - 3. Preliminary communication, Y. Okada, H. Taguchi, Y. Nishiyama and T. Yokoi, *Tetrahedron Lett.*, 1994, 35, 1231-1234. - 4. Ohta, A.; Masano, S.; Tsutsui, M.; Yamamoto, F.; Suzuki, S.; Makita, H.; Tamamura, H. and Akita, Y. J. Heterocyclic Chem., 1981, 18, 555-558. - 5. Pedersen, B. S.; Schebye, S.; Clausen, K. and Lowesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 293-297. - 6. Ohta, A.; Shimazaki, M.; Tamamura, H.; Mamiya, Y. and Watanabe, T. J. Heterocyclic Chem., 1983, 20, 951-955. - 7. Ohta, A.; Shimazaki, M.; Tanekura, N. and Hayashi, S. Heterocycles, 1983, 20, 797-802. - 8. Jones, R. G. J. Amer. Chem. Soc. 1949, 71,78-81 - 9. - Baxter, R. A. and Spring, F. S. J. Chem. Soc. 1947, 1179-1183. Newbold, G. T. and Spring, F. S. J. Chem. Soc. 1947, 1183-1184. 10. - Ohta, A.; Akita, Y. and Hara, M. Chem. Pharm. Bull. 1979, 27, 2027-2041. 11. - 12. Taguchi, H.; Yokoi T.; Kasuya, F.; Nishiyama, Y.; Fukui, M. and Okada, Y. J. Chem. Soc. Chem. Commun., 1994, 247. - 13. Taguchi, H.; Nishiyama, Y.; Camargo, A. C. M. and Okada, Y. Chem. Pharm. Bull. 1993, 41, 2038-2039. - 14. Vaughan, J. R., Jr., and Osato, R. L. J. Am. Chem. Soc., 1952, 74, 676-678. - 15. Powers, J. C. and Tuhy, P. M. J. Am. Chem. Soc., 1972, 94, 6544-6545. (Received in Japan 14 April 1995; accepted 12 May 1995)